

Q-band planar ultra-compact microwave circulators

Lab-STICC / UBO

N. Noutehou V. Laur P. Queffelec

Thales Alenia Space

C. Patris D. Névo O. Vendier Thales Research & Technology *R. Lebourgeois*

> **CNES** J.L. Roux

SPCD 2018

- Concept and materials
- Demonstration in rectangular waveguide technology
- Ultra-compact planar circulators
- Conclusion and prospects

Microwave circulators and isolators

- Non-reciprocal devices
- Decoupling amplifiers
- Protection of RF systems (mismatched impedances / EM aggression)

Antenna

(7

Amplifier

SPCD 2018

3/19

Isolator

€...

Filter

Ferrites

- Garnet ferrites
 - YIG and substituted YIG (Gadolinium, Vanadium, Aluminum, Cobalt...)
 - up to X-Ku bands
- Spinel ferrites
 - \Box ex. NiFe₂O₄, Li_{0.5}Fe_{0.5}Fe₂O₄...
 - up to E-W bands
- Hexaferrites
 - \bigcirc SrM (SrFe₁₂O₁₀) and BaM (BaFe₁₂O₁₀)
 - Ka to Q/V bands (and more?)
- Expensive and bulky devices / RF designers tend to remove it from front-ends
- New technologies and materials have to be developped

SPCD 2018 4/19

Conce

Concept and materials

SPCD 2018 5/19 THALES

Self-biased technology for Q-band applications

36-38 GHz soft ferrite-based planar circulator

SPCD 2018

6/19

Interest of self-biased technology:

- > Soft ferrite: thickness mainly dependent on magnet size
- > Ex. 36-38 GHz planar circulator: magnet = 3.8 mm, ferrite = 0.2 mm

> Materials requirement:

- ➢ High remanent-to-saturation ratio (M_r/M_s)
- > Low magnetic losses (Δ H)
- > High anisotropy field (H_k)
- > Properties of SrM BUT H_k too low for Q-band operation

Selected material:

Substituted strontium hexaferrite

Substituted strontium hexaferrites

□ Synthesis:

- Powder preparation (solid state reaction)
- Powder calcination
- Orientation during pressing
- > Sintering at high temperature

Effects of substitution:

- ➢ Increase of M_r/M_s
- Increase of H_k (higher working frequency / pure SrM)

Comparison of SrM and substituted SrM hysteresis cycles measured using a SQUID

Dynamic properties modeling

- Use of Ansys HFSS (Polder's model => only valid for fully saturated ferrites)
- Use of Polder's model for highly pre-oriented hexaferrites:

$$H_{int\ Polder} = H_{kp} + H_{k} - N_{z} \times M_{r}$$
Demagnetizing field

- N_z (h/r) integrated into EM simulators
- Shape-dependant magnetic properties: taken into account during the simulations

$$M_{Polder} = M_r$$

Polder's model

$$\omega_{H} = \gamma (H_{\text{int}} + i\Delta H)$$
$$\omega_{H} = \gamma \Delta \pi M$$

$$\gamma = 5.6\pi \cdot 10^6 \, rad \cdot s^{-1} \, / \, Oe$$

Lab

Permeability spectra of substituted SrM puck calculated using Polder's model

SPCD 2018 8/19

Optimized structure

Simulated optimized performances of SrM-2-based circulator

IL _{min} (dB) @f GHz	Isolation (dB)	RL (dB)	RBW _{Iso < -1}	_{5dB} (%)
0.41 @38.1 GHz	21.2	24.6	16.9	
SPCD 2018				¢.co

9/19

Realization

- Y-junction in rectangular waveguide technology (WR-19)
- Hexaferrite machining (c-axis perpendicular to the plane)
- Sticking at the center of the Y-junction

Measurement

- Microwave measurement 35-45 GHz
- TRL calibration
- Measurement in isolator mode (load connected to one of the port)

Photograph of the circulator in rectangular waveguide technology (Insert: hexaferrite pucks placed in the middle of the Y-junction)

SPCD 2018 10/19

Microwave measurement

Measured S-parameters of the optimized Y-junction

IL _{min} (dB) @ f GHz	0,41 @ 38,9 GHz		
Isolation (dB)	26,5		
RL (dB)	30,7		
RBW _{Iso < -15 dB} (%)	10,4		

$$\Rightarrow$$
 IL_{max} in BW = 0,52 dB

⇒ Ripple = 0,11 dB

THALES

LabSTICC

- Promising results
- > Hexaferrites: competitive / spinel ferrites

SPCD 2018 11/19

Effect of temperature

- \blacktriangleright @ 40 GHz & 115°C: ΔIL = 0.23 dB, Δiso = 7 dB
- Isolation remains > 15 dB up to 115°C

- > Decrease of M_s and $M_r = 20\%$
- > Increase of $H_c = 14\%$

THALES

> Retro-simulations: linear increase of ΔH as a function of temperature ($\Delta H_{22^{\circ}C}$ = 400 Oe and $\Delta H_{115^{\circ}C}$ = 760 Oe)

LabiSTICC

SPCD 2018 12/19

C Transfer to planar technology (microstrip)

- > Not obvious: static magnetic properties / shape effect
- > Possible decrease of cycle squareness

SPCD 2018

13/19

¢cnes

Magnetic properties

Slight decrease of Mr/Ms (disk = 0.88 / plate = 0.83)

> Compatible with the realization of planar self-biased circulators

Circulator design

- Bosma model (pre-design)
- Optimization Ansys HFSS

M _s (G	6) H _k (Oe	e) M _r /M _s	ΔH (Oe)	ε _r
4140) 1975	0.83	400	21

- > Very compact device: 2.5 mm x 2.5 mm x 0.1 mm
- > Simulated performance: $IL_{min} = 1.13 \text{ dB} @37.8 \text{ GHz}$, $RBW_{-15dB} = 7.7\%$

THALES **SPCD 2018** LabiSTICC 1es 15/19

Fabrication

- Machining and polishing of ferrite substrates
- Metallization: standard thin film process

Microwave measurements

- Dedicated microstrip probes
- > VNA 25-45 GHz frequency band
- Temperature -15°C to +60°C

SPCD 2018 16/19

Measured performance

@ 35.8 GHz / Room temp.				
IL (dB)	0.45			
RL (dB)	27			
Iso (dB)	17			
RBW (%)	4.5			

- Slight shift in frequency (under investigation)
- Good temperature stability

Measured S-parameters (room temp., -15°C, +60°C)

THALES

- Increase of IL: +0.15 dB at +60°C
- RL & Iso higher than 15 dB from -15°C to +60°C

SPCD 2018 17/19

Conclusions and prospects

Substituted strontium hexaferrites: promising technology for Q-band compact circulators and isolators

State of the art: Low insertion loss (0.45 dB) for a very compact low-weight circulators (~3 mg)

Standard thin film process

- Investigation of measurement/simulation frequency shifts
- Correlation of temperature evolution (static magnetic properties)
- Design and fabrication of Ka-band circulators and isolators (dedicated hexaferrites)

SPCD 2018 18/19

Acknowledgements

Thank you for your attention

SPCD 2018 19/19

